
Unistack: An Interoperable Runtime Environment for
Exascale Systems

Pavan Balaji (Argonne) Paul Hargrove (Berkeley) Laxmikant Kale (UIUC)
Sriram Krishnamoorthy (PNNL)

1 Introduction

Computing research has produced a rich variety of mature
parallel programming models and their associated runtime
systems, each with its individual set of capabilities and ad-
vantages demonstrated on DOE applications. Different pro-
gramming models provide differing idioms for expressing
parallelism, managing the work of a computation, and op-
erating on distributed and shared data structures. Their as-
sociated runtime systems provide the low-level capabilities
needed to support these high-level models as well as a layer
of abstraction needed to efficiently harness increasingly
complex hardware systems. Message-passing programming
models, such as MPI [10, 15], provide a portable mecha-
nism to exchange data between pairs or groups of processes.
Data space models, such as Global Arrays (GA) [17] and
partitioned global address space (PGAS) languages [18],
have addressed the requirements of applications by allow-
ing them asynchronous access to globally distributed data.
Compute or tasking models such as the MADNESS run-
time [9, 11], ADLB [13], Scioto [7, 8], and Charm++ [12],
on the other hand, have addressed the requirements of appli-
cations such as NAMD [2], NWChem [4], Green’s function
Monte Carlo (GFMC) [13], and MADNESS using load-
balancing techniques, including work-stealing. While each
programming model provides unique capabilities, the util-
ity and potential for widespread adoption of each model is
still limited by the inability of applications to use multiple
models together. Despite the variety and broad availabil-
ity of models and runtime systems, today’s application de-
velopers must limit themselves to a single model in order
to achieve reliable application behavior, performance, and
portability.

As we move toward multi-petascale and exascale sys-
tems, both application requirements as well as hardware
complexity are expected to continue to grow. Consequently,
for applications to take full advantage of the massive paral-
lelism of such systems, it is becoming increasingly clear
that they need to combine the capabilities of multiple such
models. A well-known example is an MPI application that
needs to use a threading model within a node to better ex-
ploit the shared memory and many cores on the node. How-
ever, emerging applications and extreme-scale machines re-
quire a richer and more complex interleaving of program-
ming models. For example, how can multimodule appli-

cations primarily based on Unified Parallel C (UPC) [18]
or Coarray Fortran (CAF) [14] utilize math libraries writ-
ten in MPI, such as PETSc [1], that have had hundreds of
programmer-years of development invested in them? Sim-
ilarly, how can an application written in GA utilize load-
balancing tools written in Charm++? Can the threading in-
frastructures of Charm++ and OpenMP [5] coexist within
the same application, over the limited resources available
on the node? For promoting software reuse, especially for
expensive HPC software, it is also important that one be
able to reuse an existing module or library in a new applica-
tion, irrespective of the programming model in which it is
written.

2 The Unistack Runtime
What is required to enable applications to use multiple pro-
gramming models simultaneously? In many cases, such
capability either is not possible today or can be used only
in an extremely restricted manner. For example, MPI and
UPC, or UPC and GA, cannot naturally be used together
today without special restrictions [6] because they use dif-
ferent runtime systems that are not aware of each other’s
existence: MPI has its own runtime system, UPC uses the
Global Address Space Networking (GASNet) runtime sys-
tem [3], and GA uses Aggregate Remote Memory Copy In-
terface (ARMCI) [16] internally. Accessing the same data
object from both MPI and UPC typically leads to resource
conflicts and data corruption. Similarly, CAF programs can-
not utilize MPI libraries or Charm++ primitives without ex-
plicitly ensuring that their runtime systems do not conflict
with each other; hence, the same data objects cannot cur-
rently be used in both models.

The goal of the Unistack approach is to define, design,
and develop a natively interoperable runtime infrastructure
that aims at allowing applications to use any combination
of existing high-level programming models, including high-
level global data space models, global compute space mod-
els, or even the low-level runtime infrastructure. Legacy
applications written in MPI should be able to extend and
implement newer features using other models. New appli-
cations written in upcoming programming models should
be able to performance tune specific parts of their applica-
tion by directly using low-level communication library ca-
pabilities or hardware topology information, without being

1



concerned with interoperability issues. Applications should
be able to use similar data management techniques for regu-
lar homogeneous systems, as well as accelerator-augmented
heterogeneous systems. In short, Unistack aims at develop-
ing a framework that broadly involves a unified low-level
runtime infrastructure, i.e., a unified software runtime that
can simultaneously support multiple high-level program-
ming models. Unistack comprises unification at two levels:
Unified Low-level Communication Libraries: Under the
assumption that it has full control of the system, a com-
munication library is often “selfish.” It may block without
yielding control to other software, leading to deadlock in
many multimodel scenarios—a fundamental barrier to in-
teroperability. Unification will ensure that progress is made
on all outstanding communication at any point in the ex-
ecution, removing a lack of communication progress as a
barrier to interoperability. Selfish runtime practices include
resource allocation, often approaching a platform’s limits.
Resources for transient use may be placed in private pools
for reuse, rather than freed. For permanent resources, a dou-
bling of usage to support two simultaneous models may ex-
ceed what is available. Such concerns become more acute
as node counts increase and per core memory decreases.
Unified resource management will reduce or remove re-
source consumption as a barrier to multimodel application
development. Low-level communication runtime libraries
are often optimized based on the narrow semantics of the
programming model they support. One example is oper-
ations requiring memory allocated by (or registered with)
the runtime. Unification of runtimes allows the same mem-
ory to meet requirements of multiple models, reducing or
removing usage constraints as barriers to interoperability.
Unified Threading Runtime Systems: Most high-level
programming models, including OpenMP, Charm++, and
CAF, internally utilize programming-model-specific execu-
tion contexts (typically referred to as user-level threads) that
are mapped onto threads exposed by the operating system
or hardware. This approach allows these models to work
around data dependency stalls within the application com-
putation by scheduling a large number of user-level threads
on a limited number of operating system (OS) threads.
However, for multimodel applications that simultaneously
utilize more than one programming model, this can cause
their runtime systems to conflict with each other. Thus, the
goal of the unified threading runtime is to provide a single
interface for thread management that will be responsible for
scheduling a variety of execution contexts across available
resources and ensuring that the node-level workload is bal-
anced. Multiple programming models can utilize the unified
threading runtime for thread management, scheduling, and
balancing load across threads. Unifying the scheduling en-
gines of individual threading runtimes will allow all threads
to be cooperatively scheduled in a manner that meets the ap-
plication goals, rather than the goals of individual runtimes.

3 Summary

Challenges Addressed: Interoperability of existing and up-
coming runtime systems.

Maturity: Several runtime systems have been funded and
developed by DOE in the past few decades and have been
widely used by a large number of key DOE applications.
However, these runtime systems have been designed inde-
pendently without any notion of “working together” so far.
The time is right to take the lessons learnt from these mature
projects and unify them into a single interoperable runtime
system.

Uniqueness: While interoperability in itself is not unique
to exascale, so far, most applications could get away with
using a single programming model. However, as we move
to exascale, this is no longer possible due to the increas-
ing complexity of the applications as well as the architec-
tures. For example, nuclear physics applications such as
GFMC currently rely on a combination of message-passing
and work-stealing models (based on ADLB), which has
been shown to scale to tens of thousands of cores, enabling
the study of the phenomena within the nucleus of an atom
as complex as carbon-12. With increasing per task mem-
ory requirements of larger problems, however, using such
a model alone without complementary global address space
capabilities is impeding progress to larger elements, such as
carbon-14 and oxygen-16. Such problems are also common
in applications such as NWChem which utilizes global ar-
rays for global data access. With the increasing hierarchy of
processing elements, however, data access costs are becom-
ing heavily dependent on the relative locality of the data and
the processes accessing the data, making the task migration
capabilities in tasking models more effective in some cases,
compared with accessing data through global address space
models.

Novelty: A unified runtime system is novel in its ability
to simultaneously support multiple programming models—
a feature that has been fundamentally missing in all exist-
ing runtime systems. This would be the first concentrated
efforted to unify DOE investment in runtime systems for
programming models into a single framework usable by ap-
plications.

Applicability: A unified runtime system for interoperable
programming models is a key component that is impeding
progress for many DOE applications.

Effort: A unified runtime infrastructure is a complex, but
critical, undertaking that requires expertise in communica-
tion runtime layers, threading runtimes, and operating sys-
tem support for light-weight communication and threads. A
team of 4 FTEs working together for 3-5 years would be a
reasonable estimate for this effort.

2



References
[1] S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp,

D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith,
and H. Zhang. PETSc users manual. Technical report,
Citeseer, 2004.

[2] J. A. Board, L. V. Kalé, K. Schulten, R. Skeel, and
T. Schlick. Modeling biomolecules: Larger scales,
longer durations. IEEE Computational Science and
Engineering, 1(4), 1994.

[3] Dan Bonachea, Christian Bell, Paul Hargrove, and
Mike Welcome. GASNet 2: An Alternative High-
Performance Communication Interface, November
2004.

[4] E. J. Bylaska and et al. NWChem, A Computational
Chemistry Package for Parallel Computers, Version
5.1, 2007.

[5] B. Chapman, G. Jost, and R. Van Der Pas. Using
OpenMP: portable shared memory parallel program-
ming, volume 10. The MIT Press, 2007.

[6] J. Dinan, P. Balaji, E. Lusk, P. Sadayappan, and
R. Thakur. Hybrid Parallel Programming with MPI
and Unified Parallel C. In Proceedings of the ACM In-
ternational Conference on Computing Frontiers (CF),
Bertinoro, Italy, May 2010.

[7] J. Dinan, S. Krishnamoorthy, D. Larkins, J. Nieplocha,
and P. Sadayappan. Scioto: A framework for global-
view task parallelism. In Proceedings of the 2008
37th International Conference on Parallel Processing,
ICPP ’08, 2008.

[8] J. Dinan, D. Larkins, P. Sadayappan, S. Krishnamoor-
thy, and J. Nieplocha. Scalable work stealing. In
Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09,
2009.

[9] G I Fann, R J Harrison, G Beylkin, J Jia, R Hartman-
Baker, W A Shelton, and S Sugiki. MADNESS ap-
plied to density functional theory in chemistry and nu-
clear physics. Journal of Physics: Conference Series,
78(1):012018, 2007.

[10] Message Passing Interface Forum. MPI: A message-
passing interface standard, 1994.

[11] R. J Harrison. Multiresolution ADaptive NumEri-
cal Scientific Simulation (MADNESS), 2010. see
http://www.csm.ornl.gov/ccsg/html/projects/madness.html.

[12] L. V. Kale and S. Krishnan. CHARM++: a portable
concurrent object oriented system based on C++.

In OOPSLA ’93: Proceedings of the eighth annual
conference on Object-oriented programming systems,
languages, and applications, pages 91–108, New
York, NY, USA, 1993. ACM.

[13] E. Lusk, S. Pieper, and R. Butler. More SCALABIL-
ITY, Less PAIN. SciDAC Review, (17):30–37, 2010.

[14] J. Mellor-Crummey, L. Adhianto, W. Scherer III, and
G. Jin. A new vision for Coarray Fortran. In PGAS
’09: Proceedings of the Third Conference on Par-
titioned Global Address Space Programing Models,
pages 1–9, NY, NY, USA, 2009. ACM.

[15] MPI Forum. MPI-2: Extensions to the Message-
Passing Interface. Technical Report, University of
Tennessee, Knoxville, 1996.

[16] J. Nieplocha and M. Krishnan. High performance re-
mote memory access comunications: The ARMCI ap-
proach. International Journal of High Performance
Computing and Applications, 20:2006, 2005.

[17] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krish-
nan, H. Trease, and E. Apra. Advances, Applica-
tions and Performance of the Global Arrays Shared
Memory Programming Toolkit. International Jour-
nal of High Performance Computing Applications,
20(2):203–231, 2006.

[18] UPC Consortium. UPC Language Specifications,
v1.2. Technical Report LBNL-59208, Lawrence
Berkeley National Lab, 2005.

3


